Solutions - Resit (Group A) January 282021

1. Let S_{13} be the permutation group on $\{1,2,3, \ldots, 13\}$ and let $\sigma=(34782)(1384)(1247)(69) \in$ S_{13}.
(a) [1 point] Write σ as a product of 2-cycles.

Solution: One can write

$$
\sigma=(34)(47)(78)(82)(13)(38)(84)(12)(24)(47)(69)
$$

Any correct answer is 1 point.
(b) [2 points] Write the inverse of σ as a product of disjoint cycles.

Solution: We write this permutation as a product of disjoint cycles:

$$
\sigma=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{ll}
4 & 8
\end{array}\right)\left(\begin{array}{ll}
6 & 9
\end{array}\right)
$$

Since disjoint cycles commute the inverse of σ is the product of the inverses of the cycles:

$$
\sigma^{-1}=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(478)(69)
$$

Writing as a product of disjoint cycles is 1 point; finding the inverse is 1 point.
(c) [2 points] Compute the kernel of the homomorphism

$$
\begin{aligned}
\varphi: \mathbb{Z} & \rightarrow S_{13} \\
k & \mapsto \sigma^{k}
\end{aligned}
$$

Solution: By definition

$$
\operatorname{ker}(\varphi)=\left\{k \in \mathbb{Z}: \sigma^{k}=(1)\right\}
$$

This implies that $\operatorname{ord}(\sigma)=\operatorname{lcm}(3,3,2)=6$ divides k. Therefore we have $\operatorname{ker}(\varphi)=6 \mathbb{Z}$.
Arguing that $\operatorname{ord}(\sigma) \mid k$ is $\mathbf{0 . 5}$ points, computing $\operatorname{lcm}(3,3,2)=60.5$ points and concluding $\operatorname{ker}(\varphi)=6 \mathbb{Z}$ is 1 point.
(d) [2 points] Find a subgroup of S_{13} containing σ and isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$.

Solution: By CRT, we have $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \cong \mathbb{Z} / 30 \mathbb{Z}$. So we need to find a cyclic subgroup of order 30 which contains σ. The cyclic group generated by

$$
\tau=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)(487)(69)(510111213)
$$

contains σ since $\tau^{25}=\sigma$. Moreover, since $\operatorname{lcm}(3,3,2,5)=30$, this subgroup consists of 30 elements.
If they figure out that the group should be generated by τ and a 5 -cycle then 1 points, and if they choose a correct 5 -cycle (i.e., a disjoint one) then it is 2 points. They should also argue why these permutations generate a group isom. to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ (if they don't then deduct 0.5 points).
2. Consider the group

$$
G=\left\{\left[\begin{array}{ll}
x & y \\
z & t
\end{array}\right]: x, y, z, t \in \mathbb{Z} / 5 \mathbb{Z}, x t-z y \neq 0\right\}
$$

with respect to matrix multiplication. Let

$$
H=\left\{\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]: a, b \in \mathbb{Z} / 5 \mathbb{Z}, a \neq 0\right\}
$$

(Recall that $(\mathbb{Z} / p \mathbb{Z})^{\times}$, where p is a prime, is a group with respect to multiplication.)
(a) [3 points] Show that H is a subgroup of G but not a normal subgroup.

Solution: Since $a \neq 0$ we have $a \cdot 1-0 \cdot b \neq 0$, so $H \subset G$. [0.5 points] - [0.5 points] $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in H$;
$-[\mathbf{0 . 5}$ points $]$ For every $\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}c & d \\ 0 & 1\end{array}\right] \in G$ we have

$$
\left[\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
c & d \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
a c & a d+b \\
0 & 1
\end{array}\right] \in G .
$$

- [0.5 points] For every $\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right] \in G$ the matrix $\left[\begin{array}{cc}a^{-1} & -b a^{-1} \\ 0 & 1\end{array}\right] \in G$ (as $a \neq 0$ and every non zero element in $\mathbb{Z} / 5 \mathbb{Z}$ is invertible) such that

$$
\left[\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a^{-1} & -b a^{-1} \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So H is a subgroup of G. By definition H is normal iff $g h g^{-1} \in H$ for all $g \in G$ and $h \in H$ so to show that H is not normal it suffices to find $g \in G$ and $h \in H$ such that $g h g^{-1} \notin H$. Let

$$
g=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \in G \quad \text { and } \quad h=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \in H
$$

Then we get

$$
g h g^{-1}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right] \notin H .
$$

[1 point]

(b) [5 points] Find the Sylow p-groups in H. Which ones are normal in H ?

Solution: Since $a, b \in \mathbb{Z} / 5 \mathbb{Z}$ and $a \neq 0$ we have $|H|=20=2^{2} \cdot 5$. The possible Sylow p subgroups are Sylow 2-groups of order 4 and Sylow 5 -groups of order 5 . We first determine n_{2} and n_{5}. By Sylow theory we have

$$
\begin{array}{llll}
n_{2} \mid 5 & \text { and } & n_{2} \equiv 1 & \bmod 2 \\
n_{5} \mid 4 & \text { and } & n_{5} \equiv 1 & \bmod 5
\end{array}
$$

Therefore we get $n_{2}=1$ or 5 and $n_{5}=1$. So there is only one Sylow 5 -group, denote it by P_{5}. Since $\left|P_{5}\right|=5$, it is cyclic so we need to find an element in H of order 5 . We determine $a, b \in \mathbb{Z} / 5 \mathbb{Z}$ such that

$$
\left[\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right]^{5}=\left[\begin{array}{cc}
a^{5} & a^{4} b+a^{3} b+a^{2} b+a b+b \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So one can take $a=1$, and $b=1$. So $P_{5}=\left\langle\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\rangle$.

We will now determine the Sylow 2-groups. Let P_{2} be a Sylow 2-group. Since $\left|P_{2}\right|=4$, we have

$$
P_{2} \cong \mathbb{Z} / 4 \mathbb{Z} \quad \text { or } \quad \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

We have

$$
\left[\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right]^{4}=\left[\begin{array}{cc}
a^{4} & a^{3} b+a^{2} b+a b+b \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Therefore, an element has order 4 iff $a^{4}=1 \bmod 5, a^{2} \neq 1 \bmod 5$ and $a^{3} b+a^{2} b+a b+b=0$ $\bmod 5$ iff $(a, b) \in\{(2,0),(2,1),(2,2),(2,3),(2,4)\}$. Therefore there are 5 Sylow 2-groups and they are isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$, which are

$$
\left\langle\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{ll}
2 & 4 \\
0 & 1
\end{array}\right]\right\rangle
$$

The Sylow 5 -group is the only Sylow normal subgroup.
Computing n_{2} and n_{5} is 1 point; writing the Sylow 5 -group is 1 point; showing that the Sylow 2 -group is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ is 1 point; writing the Sylow 2groups is 1 point; determining the normal ones correctly is 1 point.
(c) [3 points] The group H acts on $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ via the rule

$$
\left(h,\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \mapsto h\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Is this action faithful; transitive; or fixed point free? Explain.

Solution:
$-[\mathbf{1}$ point $]$ The action is faithful: Let $\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right] \neq\left[\begin{array}{ll}c & d \\ 0 & 1\end{array}\right]$ be arbitrary elements in H. Then we have

$$
\left[\begin{array}{c}
a x+b y \\
y
\end{array}\right] \neq\left[\begin{array}{c}
c x+d y \\
y
\end{array}\right] \Longleftrightarrow a x+b y \neq c x+d y \quad \bmod 5 \Longleftrightarrow(a-c) x \neq(d-b) y \bmod 5
$$

If $b \neq d$, one can take $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and if $a \neq c$, one can take $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. This proves that the action is faithful.

- [1 point $]$ The action is not transitive: take $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ then

$$
H \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left\{\left[\begin{array}{l}
a \\
0
\end{array}\right]: a \in \mathbb{Z} / 5 \mathbb{Z}\right\} \neq \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}
$$

- [1 point $]$ The action is not fixed point free since it fixes $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(d) [2 points] Write $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ as a union of disjoint orbits of the action in (c).

Solution: We have

$$
\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}=H\left[\begin{array}{l}
0 \\
0
\end{array}\right] \cup H\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cup H\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cup H\left[\begin{array}{l}
0 \\
2
\end{array}\right] \cup H\left[\begin{array}{l}
0 \\
3
\end{array}\right] \cup H\left[\begin{array}{l}
0 \\
4
\end{array}\right]
$$

Complete answer is 2 points and any reasonable attempt with a mistake 1 or 1.5 points depending on the mistake.
3. Let G be a group with precisely one non-trivial proper normal subgroup N. Suppose $|N|=5$.
(a) [2 points] If $f: G \rightarrow \mathbb{Z} / 12 \mathbb{Z}$ is a surjective homomorphism, what are the possible orders for the group G ?

Solution: By the homomorphism theorem, we have

$$
G / \operatorname{ker}(f) \cong \mathbb{Z} / 12 \mathbb{Z}
$$

Since $\operatorname{ker}(f)$ is a normal subgroup in G, we have $\operatorname{ker}(f)=\{1\}, N$ or G. [0.5 points] Suppose $\operatorname{ker}(f)=\{1\}$. Then by the homomorphism theorem we have $|G|=12$ however on the other hand we have $5||G|$. So we get a contradiction. [0.5 points] Since f is a surjective map, the kernel cannot be G. [0.5 points] Therefore, we have $\operatorname{ker}(f)=N$ and hence we get $|G| /|N|=12$ by the homomorphism theorem. So $|G|=60$. [0.5 points]
(b) $[\mathbf{2}$ points $]$ Show that there is no injective homomorphism from G to $\mathbb{Z} / 12 \mathbb{Z}$.

Solution: If there is an injective homomorphism, then the kernel is trivial. Hence the $|G| \mid 12$. This is impossible since $5 \| G \mid$.
Correct answer is 2 points.
4. (a) [4 points] List all non-isomorphic abelian groups of order between 30 and 65 (both bounds are included) with at least two elementary divisors.

Solution: We first list all abelian non-isomorphic groups with two elementary divisors, in other words, we will list abelian groups in the form $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / a b \mathbb{Z}$. These abelian groups have order $a^{2} b$ for positive integers a, b. [0.5 points] So we list $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ with $30 \leq a^{2} b \leq 65$:

$$
\begin{aligned}
& \{(2, b): 8 \leq b \leq 16\} \\
& \{(3, b): 4 \leq b \leq 7\} \\
& \{(4, b): 2 \leq b \leq 4\} \\
& \{(5,2)\} \\
& \{(a, 1): 6 \leq a \leq 8\} .
\end{aligned}
$$

Complete list is 2 points, deduct points (proportionally) if the list is not complete.
Now assume that there are 3 elementary divisors, i.e, abelian groups are isomorphic to $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / a b \mathbb{Z} \times \mathbb{Z} / a b c \mathbb{Z}$ so the cardinality of such groups are in the form $a^{3} b^{2} c$ for some positive integers a, b, c.[0.5 points] Then we get

$$
\begin{aligned}
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z} \\
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}
\end{aligned}
$$

Same here, each group gives 0.25 points. (0.5 points in total)
If the number of divisors is larger than 3 then there are at least 4 positive integers a, b, c, d. Similarly, we get $30 \leq a^{4} b^{3} c^{2} d \leq 65$. When $b=c=d=1$, we get the case $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / a \mathbb{Z} \times$ $\mathbb{Z} / a \mathbb{Z}$ with $30 \leq a^{4} \leq 65$. However, this is not possible for any integer a. If any of b, c, d is greater than 1 we are again outside the bounds. So we conclude that the list above is the complete list. [0.5 points]
(b) $[\mathbf{3}$ points $]$ Find the elementary divisors of the multiplicative group $(\mathbb{Z} / 99 \mathbb{Z})^{\times} \times(\mathbb{Z} / 56 \mathbb{Z})^{\times}$.

Solution: By the CRT (Theorem II.3.4.) we have

$$
(\mathbb{Z} / 99 \mathbb{Z})^{\times} \times(\mathbb{Z} / 56 \mathbb{Z})^{\times} \cong(\mathbb{Z} / 7 \mathbb{Z})^{\times} \times(\mathbb{Z} / 8 \mathbb{Z})^{\times} \times(\mathbb{Z} / 9 \mathbb{Z})^{\times} \times(\mathbb{Z} / 11 \mathbb{Z})^{\times}
$$

[0.5 points]

We have $(\mathbb{Z} / 8 \mathbb{Z})^{\times}=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ and since every non identity element in this abelian group has order 2 we have

$$
(\mathbb{Z} / 8 \mathbb{Z})^{\times} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

[0.5 points]

We have $(\mathbb{Z} / 9 \mathbb{Z})^{\times}=\{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ and since the cardinality of this abelian group is 6 we have

$$
(\mathbb{Z} / 9 \mathbb{Z})^{\times} \cong \mathbb{Z} / 6 \mathbb{Z}
$$

[0.5 points]

The cardinality of $(\mathbb{Z} / 11 \mathbb{Z})^{\times}$is 10 and since it is an abelian group, it is isomorphic to $\mathbb{Z} / 10 \mathbb{Z}$. Similarly, the group $(\mathbb{Z} / 7 \mathbb{Z})^{\times}$is isomorphic to $\mathbb{Z} / 6 \mathbb{Z}$. [0.5 points] So we have

$$
\begin{aligned}
(\mathbb{Z} / 99 \mathbb{Z})^{\times} \times(\mathbb{Z} / 56 \mathbb{Z})^{\times} & \cong(\mathbb{Z} / 7 \mathbb{Z})^{\times} \times(\mathbb{Z} / 8 \mathbb{Z})^{\times} \times(\mathbb{Z} / 9 \mathbb{Z})^{\times} \times(\mathbb{Z} / 11 \mathbb{Z})^{\times} \\
& \cong \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z} \\
& \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z} \\
& \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 30 \mathbb{Z}
\end{aligned}
$$

So the elementary divisors are $2,2,2,6,30$. [1 point]
If they immediately use $(\mathbb{Z} / p \mathbb{Z})^{\times} \cong \mathbb{Z} /(p-1) \mathbb{Z}$ then don't deduct any points. They should show the other two cases.
5. True/False. Prove the following statements if they are correct and disprove if they are wrong.
(a) [2 points] The group $G=S_{5} \times D_{3}$ contains a normal subgroup H such that G / H is isomorphic to $\mathbb{Z} / 7 \mathbb{Z}$.

Solution: False. Assume that there is a normal subgroup H in G. Since $|G|=2^{5} \cdot 3^{2} \cdot 5$, we have

$$
7=|G / H|=\frac{|G|}{|H|} \in\left\{k: k \mid 2^{5} \cdot 3^{2} \cdot 5\right\} .
$$

Since 7 does not divide $|G|$, there cannot be a normal subgroup H such that G / H is isomorphic to $\mathbb{Z} / 7 \mathbb{Z}$.
Correct answer is 2 points
(b) [2 points] $D_{9} \times \mathbb{Z} / 2 \mathbb{Z}$ is isomorphic $D_{6} \times \mathbb{Z} / 3 \mathbb{Z}$.

Solution: False. The dihedral group D_{9} has an element of order 9, namely the rotation ρ_{9} by angle $2 \pi / 9$. Therefore, $\left(\rho_{9}, 0\right) \in D_{9} \times \mathbb{Z} / 2 \mathbb{Z}$ has order 9 . On the other hand the order of the elements (a, b) in $D_{6} \times \mathbb{Z} / 3 \mathbb{Z}$ is $\operatorname{lcm}(|a|,|b|)=\{1,2,3,6\}$ so there is no element of order 9 . Therefore these two groups cannot be isomorphic.

Correct answer is 2 points

(c) [2 points] Let G be a group of order 38 and let H, K be subgroups of G such that $H \subset K \subset G$ with $H \neq K$ and $K \neq G$. Then H is the trivial subgroup.

Solution: True. By Lagrange's theorem, we have $|H|||K|||G|$ and since $|K| \neq|G|$, we have $|K| \in\{1,2,19\}$ but since 2 and 19 are primes and $|H| \neq|K|$, we have $|H|=1$. So it follows. Correct answer is 2 points

GOOD LUCK! ©

