

Solutions - Resit (Group A) January 28 2021

- 1. Let S_{13} be the permutation group on $\{1, 2, 3, ..., 13\}$ and let $\sigma = (3 \ 4 \ 7 \ 8 \ 2)(1 \ 3 \ 8 \ 4)(1 \ 2 \ 4 \ 7)(6 \ 9) \in S_{13}$.
 - (a) [1 point] Write σ as a product of 2-cycles.

Solution: One can write

$$\sigma = (3\ 4)(4\ 7)(7\ 8)(8\ 2)(1\ 3)(3\ 8)(8\ 4)(1\ 2)(2\ 4)(4\ 7)(6\ 9).$$

Any correct answer is 1 point.

(b) [2 points] Write the inverse of σ as a product of disjoint cycles.

Solution: We write this permutation as a product of disjoint cycles:

 $\sigma = (1 \ 3 \ 2)(4 \ 8 \ 7)(6 \ 9).$

Since disjoint cycles commute the inverse of σ is the product of the inverses of the cycles:

 $\sigma^{-1} = (1\ 2\ 3)(4\ 7\ 8)(6\ 9).$

Writing as a product of disjoint cycles is 1 point; finding the inverse is 1 point.

(c) [2 points] Compute the kernel of the homomorphism

$$c: \mathbb{Z} \to S_{13} \\
 k \mapsto \sigma^k.$$

4

Solution: By definition

$$\ker(\varphi) = \{k \in \mathbb{Z} : \sigma^k = (1)\}.$$

This implies that $\operatorname{ord}(\sigma) = \operatorname{lcm}(3,3,2) = 6$ divides k. Therefore we have $\ker(\varphi) = 6\mathbb{Z}$. Arguing that $\operatorname{ord}(\sigma) \mid k$ is 0.5 points, computing $\operatorname{lcm}(3,3,2) = 6$ 0.5 points and concluding $\ker(\varphi) = 6\mathbb{Z}$ is 1 point.

(d) [2 points] Find a subgroup of S_{13} containing σ and isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

Solution: By CRT, we have $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/30\mathbb{Z}$. So we need to find a cyclic subgroup of order 30 which contains σ . The cyclic group generated by

$$\tau = (1 \ 3 \ 2)(4 \ 8 \ 7)(6 \ 9)(5 \ 10 \ 11 \ 12 \ 13)$$

contains σ since $\tau^{25} = \sigma$. Moreover, since lcm(3,3,2,5) = 30, this subgroup consists of 30 elements.

If they figure out that the group should be generated by τ and a 5-cycle then 1 points, and if they choose a correct 5-cycle (i.e., a disjoint one) then it is 2 points. They should also argue why these permutations generate a group isom. to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ (if they don't then deduct 0.5 points).

2. Consider the group

$$G = \left\{ \begin{bmatrix} x & y \\ z & t \end{bmatrix} : x, y, z, t \in \mathbb{Z}/5\mathbb{Z}, xt - zy \neq 0 \right\}$$

with respect to matrix multiplication. Let

$$H = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \colon a, b \in \mathbb{Z}/5\mathbb{Z}, a \neq 0 \right\}.$$

(Recall that $(\mathbb{Z}/p\mathbb{Z})^{\times}$, where p is a prime, is a group with respect to multiplication.)

(a) [3 points] Show that H is a subgroup of G but not a normal subgroup.

Solution: Since
$$a \neq 0$$
 we have $a \cdot 1 - 0 \cdot b \neq 0$, so $H \subset G$. **[0.5 points]**

$$- [0.5 \text{ points}] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in H;$$

$$- [0.5 \text{ points}] \text{ For every } \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} \in G \text{ we have}$$

$$\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} ac & ad + b \\ 0 & 1 \end{bmatrix} \in G.$$

$$- [0.5 \text{ points}] \text{ For every } \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \in G \text{ the matrix } \begin{bmatrix} a^{-1} & -ba^{-1} \\ 0 & 1 \end{bmatrix} \in G \text{ (as } a \neq 0 \text{ and every non zero element in } \mathbb{Z}/5\mathbb{Z} \text{ is invertible) such that}$$

$$\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a^{-1} & -ba^{-1} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

So *H* is a subgroup of *G*. By definition *H* is normal iff $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$ so to show that *H* is not normal it suffices to find $g \in G$ and $h \in H$ such that $ghg^{-1} \notin H$. Let

$$g = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \in G$$
 and $h = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in H$

Then we get

$$ghg^{-1} = \begin{bmatrix} 0 & 1\\ -1 & 2 \end{bmatrix} \notin H$$

[1 point]

(b) [5 points] Find the Sylow p-groups in *H*. Which ones are normal in *H*?

Solution: Since $a, b \in \mathbb{Z}/5\mathbb{Z}$ and $a \neq 0$ we have $|H| = 20 = 2^2 \cdot 5$. The possible Sylow *p*-subgroups are Sylow 2-groups of order 4 and Sylow 5-groups of order 5. We first determine n_2 and n_5 . By Sylow theory we have

```
n_2 \mid 5 and n_2 \equiv 1 \mod 2
n_5 \mid 4 and n_5 \equiv 1 \mod 5.
```

Therefore we get $n_2 = 1$ or 5 and $n_5 = 1$. So there is only one Sylow 5-group, denote it by P_5 . Since $|P_5| = 5$, it is cyclic so we need to find an element in H of order 5. We determine $a, b \in \mathbb{Z}/5\mathbb{Z}$ such that

$$\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}^5 = \begin{bmatrix} a^5 & a^4b + a^3b + a^2b + ab + b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

So one can take a = 1, and b = 1. So $P_5 = \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right)$.

We will now determine the Sylow 2-groups. Let P_2 be a Sylow 2-group. Since $|P_2| = 4$, we have

$$P_2 \cong \mathbb{Z}/4\mathbb{Z}$$
 or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

We have

$$\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}^4 = \begin{bmatrix} a^4 & a^3b + a^2b + ab + b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Therefore, an element has order 4 iff $a^4 = 1 \mod 5$, $a^2 \neq 1 \mod 5$ and $a^3b + a^2b + ab + b = 0 \mod 5$ iff $(a,b) \in \{(2,0), (2,1), (2,2), (2,3), (2,4)\}$. Therefore there are 5 Sylow 2-groups and they are isomorphic to $\mathbb{Z}/4\mathbb{Z}$, which are

$$\left\langle \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \right\rangle, \left\langle \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \right\rangle, \left\langle \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix} \right\rangle, \left\langle \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \right\rangle, \left\langle \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix} \right\rangle.$$

The Sylow 5-group is the only Sylow normal subgroup.

Computing n_2 and n_5 is 1 point; writing the Sylow 5-group is 1 point; showing that the Sylow 2-group is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ is 1 point; writing the Sylow 2-groups is 1 point; determining the normal ones correctly is 1 point.

(c) [3 points] The group H acts on $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ via the rule

$$\left(h, \begin{bmatrix} x \\ y \end{bmatrix}\right) \mapsto h \begin{bmatrix} x \\ y \end{bmatrix}.$$

Is this action faithful; transitive; or fixed point free? Explain.

Solution: - [1 point] The action is faithful: Let $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix}$ be arbitrary elements in H. Then we have $\begin{bmatrix} ax + by \\ y \end{bmatrix} \neq \begin{bmatrix} cx + dy \\ y \end{bmatrix} \iff ax + by \neq cx + dy \mod 5 \iff (a - c)x \neq (d - b)y \mod 5.$ If $b \neq d$, one can take $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and if $a \neq c$, one can take $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. This proves that the action is faithful. - [1 point] The action is not transitive: take $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then $H \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \left\{ \begin{bmatrix} a \\ 0 \end{bmatrix} : a \in \mathbb{Z}/5\mathbb{Z} \right\} \neq \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}.$ - [1 point] The action is not fixed point free since it fixes $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

(d) [2 points] Write $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ as a union of disjoint orbits of the action in (c).

Solution: We have $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} = H\begin{bmatrix} 0\\0 \end{bmatrix} \cup H\begin{bmatrix} 1\\0 \end{bmatrix} \cup H\begin{bmatrix} 0\\1 \end{bmatrix} \cup H\begin{bmatrix} 0\\2 \end{bmatrix} \cup H\begin{bmatrix} 0\\3 \end{bmatrix} \cup H\begin{bmatrix} 0\\4 \end{bmatrix}.$ Complete answer is 2 points and any reasonable attempt with a mistake 1 or 1.5 points depending on the mistake.

3. Let G be a group with precisely one non-trivial proper normal subgroup N. Suppose |N| = 5.

(a) [2 points] If $f: G \to \mathbb{Z}/12\mathbb{Z}$ is a surjective homomorphism, what are the possible orders for the group G?

Solution: By the homomorphism theorem, we have

 $G/\ker(f) \cong \mathbb{Z}/12\mathbb{Z}$

Since ker(f) is a normal subgroup in G, we have ker(f) = {1}, N or G. [0.5 points] Suppose ker(f) = {1}. Then by the homomorphism theorem we have |G| = 12 however on the other hand we have 5 | |G|. So we get a contradiction. [0.5 points] Since f is a surjective map, the kernel cannot be G. [0.5 points] Therefore, we have ker(f) = N and hence we get |G|/|N| = 12 by the homomorphism theorem. So |G| = 60. [0.5 points]

(b) [2 points] Show that there is no injective homomorphism from G to $\mathbb{Z}/12\mathbb{Z}$.

Solution: If there is an injective homomorphism, then the kernel is trivial. Hence the |G| | 12. This is impossible since 5||G|. Correct answer is 2 points.

4. (a) [4 points] List all non-isomorphic abelian groups of order between 30 and 65 (both bounds are included) with at least two elementary divisors.

Solution: We first list all abelian non-isomorphic groups with two elementary divisors, in other words, we will list abelian groups in the form $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/ab\mathbb{Z}$. These abelian groups have order a^2b for positive integers a, b. [0.5 points] So we list $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ with $30 \le a^2b \le 65$:

 $\{ (2,b) : 8 \le b \le 16 \} \\ \{ (3,b) : 4 \le b \le 7 \} \\ \{ (4,b) : 2 \le b \le 4 \} \\ \{ (5,2) \} \\ \{ (a,1) : 6 \le a \le 8 \}.$

Complete list is 2 points, deduct points (proportionally) if the list is not complete.

Now assume that there are 3 elementary divisors, i.e, abelian groups are isomorphic to $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/ab\mathbb{Z} \times \mathbb{Z}/abc\mathbb{Z}$ so the cardinality of such groups are in the form a^3b^2c for some positive integers a, b, c. [0.5 points] Then we get

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$$
$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}.$$

Same here, each group gives 0.25 points. (0.5 points in total) If the number of divisors is larger than 3 then there are at least 4 positive integers a, b, c, d. Similarly, we get $30 \le a^4b^3c^2d \le 65$. When b = c = d = 1, we get the case $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/a$

(b) [3 points] Find the elementary divisors of the multiplicative group $(\mathbb{Z}/99\mathbb{Z})^{\times} \times (\mathbb{Z}/56\mathbb{Z})^{\times}$.

Solution: By the CRT (Theorem II.3.4.) we have

$$(\mathbb{Z}/99\mathbb{Z})^{\times} \times (\mathbb{Z}/56\mathbb{Z})^{\times} \cong (\mathbb{Z}/7\mathbb{Z})^{\times} \times (\mathbb{Z}/8\mathbb{Z})^{\times} \times (\mathbb{Z}/9\mathbb{Z})^{\times} \times (\mathbb{Z}/11\mathbb{Z})^{\times}.$$

[0.5 points]

We have $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ and since every non identity element in this abelian group has order 2 we have

 $(\mathbb{Z}/8\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$

[0.5 points]

We have $(\mathbb{Z}/9\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ and since the cardinality of this abelian group is 6 we have

 $(\mathbb{Z}/9\mathbb{Z})^{\times} \cong \mathbb{Z}/6\mathbb{Z}.$

[0.5 points]

The cardinality of $(\mathbb{Z}/11\mathbb{Z})^{\times}$ is 10 and since it is an abelian group, it is isomorphic to $\mathbb{Z}/10\mathbb{Z}$. Similarly, the group $(\mathbb{Z}/7\mathbb{Z})^{\times}$ is isomorphic to $\mathbb{Z}/6\mathbb{Z}$. **[0.5 points]** So we have

$$(\mathbb{Z}/99\mathbb{Z})^{\times} \times (\mathbb{Z}/56\mathbb{Z})^{\times} \cong (\mathbb{Z}/7\mathbb{Z})^{\times} \times (\mathbb{Z}/8\mathbb{Z})^{\times} \times (\mathbb{Z}/9\mathbb{Z})^{\times} \times (\mathbb{Z}/11\mathbb{Z})^{\times}$$
$$\cong \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$$
$$\cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$$
$$\cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}.$$

So the elementary divisors are 2, 2, 2, 6, 30. [1 point] If they immediately use $(\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$ then don't deduct any points. They should show the other two cases.

- 5. True/False. Prove the following statements if they are correct and disprove if they are wrong.
 - (a) [2 points] The group $G = S_5 \times D_3$ contains a normal subgroup H such that G/H is isomorphic to $\mathbb{Z}/7\mathbb{Z}$.

Solution: **False.** Assume that there is a normal subgroup *H* in *G*. Since $|G| = 2^5 \cdot 3^2 \cdot 5$, we have

$$7 = |G/H| = \frac{|G|}{|H|} \in \{k : k \mid 2^5 \cdot 3^2 \cdot 5\}.$$

Since 7 does not divide |G|, there cannot be a normal subgroup H such that G/H is isomorphic to $\mathbb{Z}/7\mathbb{Z}$.

Correct answer is 2 points

(b) [2 points] $D_9 \times \mathbb{Z}/2\mathbb{Z}$ is isomorphic $D_6 \times \mathbb{Z}/3\mathbb{Z}$.

Solution: False. The dihedral group D_9 has an element of order 9, namely the rotation ρ_9 by angle $2\pi/9$. Therefore, $(\rho_9, 0) \in D_9 \times \mathbb{Z}/2\mathbb{Z}$ has order 9. On the other hand the order of the elements (a, b) in $D_6 \times \mathbb{Z}/3\mathbb{Z}$ is $\operatorname{lcm}(|a|, |b|) = \{1, 2, 3, 6\}$ so there is no element of order 9. Therefore these two groups cannot be isomorphic. Correct answer is 2 points

(c) [2 points] Let G be a group of order 38 and let H, K be subgroups of G such that $H \subset K \subset G$ with $H \neq K$ and $K \neq G$. Then H is the trivial subgroup.

Solution: **True.** By Lagrange's theorem, we have |H| | |K| | |G| and since $|K| \neq |G|$, we have $|K| \in \{1, 2, 19\}$ but since 2 and 19 are primes and $|H| \neq |K|$, we have |H| = 1. So it follows. **Correct answer is 2 points**